Regression

PSYC 300B - Lecture 5 Dr. J. Nicol

Regression

- Regression is a statistical procedure for determining the equation for the straight line that best fits a set of data
- The equation for the best-fitting straight line is called the regression equation
- The regression equation makes it possible to predict the value of the outcome variable (\hat{Y}) for any given value of a predictor variable or variables (X)
- The regression equation explains how differences in one variable relate to differences in another and that allows us to predict a person's scores on one variables from knowledge of that person's score on another variable(s)

The Linear Equation

- *Slope (b):* determines the direction and the degree to which the regression line is tilted (i.e., shape)
- The slope indicates how many units of change you expect in **Y** for a one-unit change in **X**
- **Y-intercept (a):** determines the point where the regression line crosses the Y-axis (i.e., location)
- The intercept is the predicted value of **Y** when **X** = 0
- Task is to solve for those values of **b** and **a** that will produce the best-fitting linear function (i.e., the one with the smallest deviation scores—the least squared error)

The Least Squared Error

- The regression equation provides the best prediction for a value of Y (i.e., \hat{Y}) for a given value of X and results in the *least squared error (residual)* between the observed data and the regression line (i.e., line of best fit)
- Residuals (errors) are the differences between the predicted values for the outcome variable based on the regression equation and the actual value of the outcome variable at each value of X ($\hat{Y} - Y$)

regression line and the actual data

Y values

 $\hat{Y} = bX + a$

X.Y data point

Distance = $Y - \hat{Y}$

The regression equation for Y is the linear equation:

X values

$$\hat{Y} = bX + a$$

where

$$b = \frac{SP}{SS_X}$$

and

$$a = M_Y - bM_X$$

$$Covariance = \frac{\sum (X - M_x)(Y - M_Y)}{N - 1} = \frac{SP}{N - 1}$$
$$r = \frac{Covariance}{(s_X)(s_Y)} = \frac{\sum (X - M_x)(Y - M_Y)}{(N - 1)(s_X)(s_Y)}$$

Standard Error of the Estimate

- The regression equation allows us to make predictions, but it does not tell us how good those predictions are
- Indicates the average distance between the regression line and the actual data (i.e., average error when using the regression equation to make predictions)
- It is the standard deviation of the errors that we make when using the regression equation to make predictions about *Y*

$$S_{Y-\hat{Y}} = \sqrt{\frac{SS_{ERROR}}{df_{ERROR}}} = \sqrt{MS_{ERROR}}$$

Assessing the Goodness of Fit

- The *mean* is a model of no relationship (i.e., $R^2 = 0$) between the outcome and predictor variable(s)
- When we use the mean as the model, we can calculate the difference between the observed values and the values predicted by the mean
- If the best-fitting model is any good then it should have significantly less error associated with it compared to the baseline model (i.e., the mean)

R² and Predictable Variability

- *R*² measures the proportion of variability in the outcome variable that can be explained by the predictor variable (i.e., variability shared by the predictor(s) and outcome)
- So (1 *R*²) measures variability in the outcome variable that cannot be accounted for by the predictor variable(s)

 $SS_{REGRESSION} = R^2 SS_Y$

 $SS_{ERROR} = (1 - R^2)SS_Y$

Degrees of Freedom

 $df_{TOTAL} = N - 1$

 $df_{REGRESSION} = # of predictors$

 $df_{ERROR} = df_{TOTAL} - df_{REGRESSION}$

Mean Square and F

$$MS_{REGRESSION} = \frac{SS_{REGRESSION}}{df_{REGRESSION}}$$
$$MS_{ERROR} = \frac{SS_{ERROR}}{df_{ERROR}}$$
$$F = \frac{MS_{REGRESSION}}{MS_{ERROR}}$$

Descriptive Statistics

	Mean	Std. Deviation	N
Y	8.0000	3.02372	8
х	4.0000	2.26779	8

Correlations					
		Y	Х		
Pearson	Y	1.000	.750		
Correlation	Х	.750	1.000		
Sig. (1-tailed)	Y		.016		
	х	.016			
N	Y	8	8		
	Х	8	8		

						Ad	justed R	Std. Error	of
N	lodel	R		R Squa	re	S	Square	the Estim	ate
1			750ª		563		.490	2.16	6025
а	a. Predictors: (Constant), X								
					ANC	VA ^a			
			S	um of					
Mode	el		Sc	uares	d	f	Mean Square	F F	Sig.
1	Regre	ssion		36.000		1	36.00	0 7.714	.032 ^t
	Resid	ual		28.000		6	4.66	7	
	Total			64.000		7			
a. De	ependent '	Variable	: Y						
b. Pr	edictors: (Constar	nt), X						
					Coeff	icient	S ^a		

Std. Error

1.630

.360

Coefficients

Beta

.750

Sig.

2.454

2.777

.050

.032

Unstandardized Coefficients

4.000

1.000

в

- A professor obtains SAT scores and first-year GPAs for a sample of *N* = 15 students
- SAT scores have a M_{SAT} = 580 with SS_{SAT} = 22,400 and GPAs have a M_{GPA} = 3.10 with SS_{GPA} = 1.26, and SP = 84
- Find the regression equation for *predicting GPA from SAT scores*
- Compute R²

Mode

(Constant)

a. Dependent Variable: Y

- Determine if the regression equation accounts for a significant proportion ($\alpha = 0.05$) of the variance in GPA (i.e., if SAT scores are a significant predictor of GPA)
- Compute the standard error of the estimate $(s_{Y-\hat{Y}})$

- Compute R²
- Calculate the line-of-best-fit and determine if the regression equation, with X as the predictor, accounts for a significant proportion (α = 0.05) of the variance in Y scores
- Compute the standard error of the estimate (s_{Y-ŷ})

Х	Y
5	10
1	4
4	5
7	11
6	15
4	6
3	5
2	0